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Abstract—The emergence of standalone Extended Reality
(XR) systems has enhanced user mobility, accommodating both
subtle, frequent head motions and substantial, less frequent
body motions. However, the pervasively used Motion-to-Display
(M2D) latency metric, which measures the delay between the
most recent motion and its corresponding display update, only
accounts for head motions. This oversight can leave users prone to
motion sickness if significant body motion is involved. Although
existing methods optimize M2D latency through asynchronous
task scheduling and reprojection methods, they introduce chal-
lenges like resource contention between tasks and outdated pose
data. These challenges are further complicated by user motion
dynamics and scene changes during runtime.

To address these issues, we for the first time introduce the
Camera-to-Display (C2D) latency metric, which captures the
delay caused by body motions, and present BOXR, a framework
designed to co-optimize both body and head motion delays
within an XR system. BOXR enhances the coordination between
M2D and C2D latencies by efficiently scheduling tasks to avoid
contentions while maintaining an up-to-date pose in the output
frame. Moreover, BOXR incorporates a motion-driven visual
inertial odometer to adjust to user motion dynamics and employs
scene-dependent foveated rendering to manage changes in the
scene effectively. Our evaluations show that BOXR significantly
outperforms state-of-the-art solutions in 11 EuRoC MAV datasets
across 4 XR applications across 3 hardware platforms. In con-
trolled motion and scene settings, BOXR reduces M2D and C2D
latencies by up to 63% and 27%, respectively and increases frame
rate by up to 43%. In practical deployments, BOXR achieves
substantial reductions in real-world scenarios—up to 42% in
M2D latency and 31% in C2D latency—while maintaining
remarkably low miss rates of only 1.6% for M2D requirements
and 1.0% for C2D requirements.

I. INTRODUCTION

Extended Reality (XR), which encompasses virtual reality,
augmented reality, and mixed reality, offers an immersive
virtual-physical experience to the user [1, 2]. An XR system
captures the user’s motion through various sensors such as
an inertial measurement unit (IMU) and a camera (CAM),
processes the sensor data to generate a new image frame
according to the user’s motion and surrounding scene changes,
and displays the generated frame on a head-mounted display.

As evident by prior research, the delay between a motion’s
capture and the motion’s display in the output frame can
cause perception misalignment [3, 4]. Existing systems address
this by focusing on optimizing the Motion-to-Display latency
(M2D) metric, which measures the time it takes to display the
latest motion. Despite extensive optimization of M2D, as illus-
trated in the left subfigure of Fig. 1, the virtual user interface

Fig. 1: Comparison between the Vision Pro [5] and BOXR
when large body motion exists

of Apple Vision Pro [2] drifts towards the opposite direction of
movement when the user makes significant movements during
snowboarding [5]. This significantly hinders the quality of the
immersive experience and can cause motion sickness.

We find that the fundamental reason behind this problem lies
in the imprecise distinction of “motion”. The user’s motion
recognized by an XR system can be categorized into two
types based on the required sensors. The first type of motion
includes frequent rotational movements or small-magnitude
translational movements that do not involve position changes
within the environment and thus can be reliably captured by
IMU. Since this motion primarily involves head movement,
we refer to it as head motion. The second type of motion
involves less frequent but more extensive displacement, specif-
ically movements that require camera-based localization in
the environment to capture absolute position changes, such
as walking in a room. Because this motion results in changes
in the user’s body posture, we refer to it as body motion. The
M2D metric widely used in current studies represents only
the head motion captured by the IMU sensor running at a
high sampling rate (e.g., 500 Hz). Consequently, body motion,
which requires slower camera updates (e.g., 20 Hz), remains
unaccounted for in M2D assessments. Therefore, even with
significant optimization of M2D by Vision Pro [6] and state-
of-the-art research [7–9], the interface continues to encounter
drift caused by the substantial delay of body motion in the
output frame.

After a thorough analysis of the end-to-end XR execu-
tion pipeline, we identified the root cause of why the M2D
metric alone cannot capture the delay between body mo-
tion detection and its display. To address this, we define
and introduce another key metric: Camera-to-Display latency
(C2D) which is essential for accurately capturing this delay.
However, co-optimizing M2D and C2D in an XR system
involves several challenges. First, state-of-the-art XR frame-
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Fig. 2: Left: ILLIXR, an open-sourced state-of-the-art XR system, involves two types of motion processing sequences for the
final display. Right: Example schedule of XR tasks. Blue arrows show C2D and orange arrows show M2D sequences.

works like ILLIXR [10] schedule tasks asynchronously and
use reprojection-based methods such as asynchronous time-
warp [7, 8] to optimize M2D. However, there is contention
between the reprojection task required by M2D and the scene
rendering task essential to C2D, as both need to compete for
the shared GPU. Straightforward solutions include adjusting
the periodicity of tasks to simultaneously improve M2D and
C2D cannot eliminate contention, resulting in greater fluc-
tuations in both metrics and exacerbating motion sickness.
Additionally, the dynamic nature of user motion and scene
changes introduces significant variations in task execution
times, further complicating this issue.

Contributions. To effectively co-optimize M2D and
C2D, we present BOXR, a Body and head motion delay
Optimization framework for eXtended Reality systems. BOXR
incorporates our discovery of C2D based on the delay of
body motion and addresses the unique challenges due to co-
optimization. First, BOXR proposes a contention-preventive
scheduling policy to eliminate contention between rendering
and reprojection tasks. Additionally, it designs an on-demand
IMUi to minimize IMU wasted work during execution. This
approach ensures consistently low M2D and C2D latencies,
through efficiently managing task execution sequences to pre-
vent unnecessary delays and conflicts. Built upon the schedul-
ing policy, BOXR designs a motion-driven visual inertial
odometer (VIO) which dynamically adapts the feature extrac-
tion frontend to the motion dynamics, correcting additional
position errors with an error-bounding method. The intriguing
aspect of this design is how it intelligently adapts in real-time
to the user’s motions, maintaining VIO execution times within
the set budget without significantly increasing position errors.
Additionally, BOXR implements Scene-Dependent Foveated
Rendering, a technique that dynamically adjusts the foveation
area according to the number of objects in the scene. By
centering foveation on the centroid of objects, BOXR manages
to maintain high frame quality while controlling render times.
Our intuition is to prioritize rendering resources where they
matter most, based on real-time scene analysis.

We implement BOXR based on the ILLIXR framework [10]
and test four popular XR applications across three hard-
ware settings with eleven trajectories1. As shown in Fig. 1,
BOXR consistently maintains the interface at the center of

1Our implementation can be found at: https://github.com/rtenlab/BOXR.git

the viewport that closely aligns with user movement when
significant body motion occurs. We conduct evaluations using
both controlled trajectory datasets with diverse XR application
scenes and real-world scenarios featuring varied motion levels.
Compared to the state-of-the-art, BOXR achieves:
• Effectiveness: BOXR reduces up to 63% of M2D and 27%

of C2D while increasing frame rate by up to 43% across
three hardware platforms under different applications and
trajectories.

• Robustness: In extremely dynamic motion and scene sce-
narios, BOXR experiences at most 10% M2D increase and
6% C2D increase, leading to stable usability.

• Applicability: When deploying in real-world scenarios,
BOXR achieves up to 42% M2D reduction and 31% C2D
reduction, resulting in only 1.6% M2D miss rate and 1.0%
C2D miss rate across three applications.

II. BACKGROUND

A. XR System Model

Recent XR systems involve various sensing and algorithmic
tasks. In this subsection, we give a brief description of these
tasks and their execution workflow in ILLIXR [10], which is
a representative state-of-the-art open-source XR framework.
Fig. 2 illustrates the overview of the ILLIXR system.

To maximize utilization and increase throughput, ILLIXR
adopts a publisher-subscriber model, where each task runs
asynchronously as shown in Fig. 2 right [7, 10]. Sensor
readings from the IMU and CAM are published onto image
and inertia topics and pipelined into the perception phase
consisting of VIO and IMUi tasks:
• Visual Inertial Odometer (VIO): The VIO task subscribes

to both CAM image and IMU inertia topics, but executes
only when the CAM topic arrives, consequently getting the
same period as CAM. VIO extracts features and conducts
pose estimation based on Multi-State Constraint Kalman
Filter (MSCKF) algorithm [11]. VIO publishes as output
the estimated pose capturing the latest body movement.

• IMU integration (IMUi): The IMUi task is triggered when-
ever a new IMU sensor reading arrives [12]. IMUi extrapo-
lates the last pose from VIO to the arrival time of the IMU
data, in order to compensate for the slow update rate of
CAM and the long processing time of VIO. We call the
output of IMUi a fused pose since it captures body motion
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from the raw pose as well as head motion using the latest
inertia data from IMU.

Next, the visualization phase involves the following tasks:
• Scene Reconstruction (SR): The SR task employs the fused

pose from the perception phase and calculates the viewport
that determines the display area at the default 120 FPS target
frame rate, which is equivalent to an 8 ms period.

• Scene Reconstruction Rendering (SRR): The completion of
the SR task activates the SRR task. SRR renders a 2D frame
within the viewport provided by SR.

• Asynchronous Timewarp (ATW): The ATW task leverages
the up-to-date fused pose published after SRR to generate
the user’s view matrix, which is the inverse of the cam-
era transformation matrix that contains the complete 3D
information. Determined by the default target frame rate,
ATW is also scheduled with the 8 ms period and runs
asynchronously to SR and SRR.

• Asynchronous Timewarp Reprojection (ATWR): Upon com-
pletion of ATW, the ATWR task reprojects the 2D frame
based on the view matrix from ATW and completes the
final 3D frame.
During the execution, VIO, IMUi, SR, and ATW only use

the CPU for computation, whereas SRR and ATWR primarily
use the GPU for rendering and projection. Each of these tasks
is a separate thread and they run concurrently unless there is
any explicit input dependency explained above. In particular,
SRR and ATWR are designed to share a single GPU stream
because they access the same memory region of the frame
buffer; hence, they are executed sequentially on the GPU in a
first-in-first-out order [13, 14].

B. Characterizing latency metrics

Since humans are highly perceptive of motion delay, any
delay between the latest user motion and the displayed output
that exceeds 20 ms leads to perception misalignment in an
XR system [3, 4]. Within the context of XR, the latest ‘head’
motion is consistently captured by IMU due to its high sample
rate compared to CAM. In the existing work [3, 7, 8, 10], this
delay is quantified using the following metric:

Def. 1 (Motion-to-Display Latency). The motion-to-display la-
tency (M2D) is defined as the time interval between capturing
of the latest motion by the IMU and its corresponding display
on the HMD. In other words, M2D is the time to complete the
IMUi→ATW→ATWR sequence, e.g., orange arrows in both
sub-diagrams of Fig. 2.

However, as M2D does not distinguish between different
types of motion, it always begins from the most recent IMU
sensor input that captures only head motion. Consequently,
even if the state-of-the-art XR system achieves satisfactory
M2D performance [2, 6], users still experience noticeable
perception misalignment when engaging in significant body
motion, as we showed with Fig. 1(A). To better address the
perception misalignment and effectively differentiate between
delays caused by IMU-captured head motion and CAM-
captured body motion, we introduce the following:

Def. 2 (Camera-to-Display Latency). The camera-to-display
latency (C2D) is defined as the time interval between capturing
the latest body motion by CAM and its corresponding display
on the HMD.2 C2D is therefore the time to complete the
sequence of VIO→IMUi→SR→SRR→ATW→ATWR, e.g.,
blue arrows in both sub-diagrams of Fig. 2.

C2D begins with VIO which generates a raw pose. IMUi
then calculates to produce a fused pose that encompasses both
head and body motion. Subsequently, SR and SRR utilize this
fused pose to render the 2D frame, which ATW and ATWR
further reproject to produce the final 3D frame output. Given
that users typically perceive displacement through changes of
objects in the scene, we set the C2D requirement to 80 ms, a
threshold commonly applied in video games to ensure steady
updates of virtual objects [1, 16].

III. CHALLENGES

A. Challenges for M2D and C2D optimization

To understand the correlation between M2D and C2D, we
will discuss notable performance bottlenecks and why simple
methods that are seemingly positive in reducing latencies do
not work in XR systems. We conducted experiments using
two prevalent XR applications: Gldemo [10], which has lighter
rendering demands, and Sponza [17], known for its intensive
rendering requirements. Both applications are implemented on
ILLIXR [10]. Only a PC platform is used in this section but
our evaluation in Sec. V includes two embedded platforms as
well. We used the default target frame rate of 120 FPS set by
ILLIXR, which gives the task periods shown in Fig. 2.

We first analyze the effect of ATW and ATWR tasks. In
existing XR systems, ATW and ATRW are known to be effec-
tive in reducing M2D, thanks to their asynchronous execution
to SR and SRR [7, 8, 10]. The right side of Fig. 2 gives an
example schedule. The execution time of SR is much smaller
than that of ATW because SR calculates only one viewport
position but ATW performs the entire matrix transformation
based on the latest fused pose. Conversely, SRR takes longer
to execute than ATWR because SRR renders a whole 2D frame
based on the viewport from SR but ATWR only reprojects the
scene with the depth information from ATW. Also, we can
observe from the figure that the execution of SRR and ATRW
does not overlap (highlighted by red blocks). This is because
they share the frame buffer memory, requiring them to contend
for the same GPU stream and execute sequentially.

To mitigate such GPU contention for ATWR and improve
M2D, one may consider increasing the period of SR, thereby
decreasing the number of SRR jobs and reducing the blocking
time caused by contention. However, Fig. 3(A) demonstrates
that optimizing M2D by increasing the SR period leads to
a larger C2D. This phenomenon is further elucidated in
Fig. 3(B). As the SR period is increased, the last ATWR job
receives the raw pose from the first VIO job, which is outdated

2It is worth noting that C2D differs from the photon-to-photon latency [15]
used in some literature since it only measures the time for see-through display
of CAM images on the HDM, without involving the pose estimation of VIO.
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Fig. 3: Negative impact of improving M2D on C2D

Fig. 4: Effects of simple co-optimization using task timers

since the second VIO has already finished execution. The use
of this outdated raw pose causes a significant C2D increase,
the amount of which is illustrated by the red arrow in Fig. 3(B).

Obs. 1. Solely optimizing M2D latency by minimizing con-
tention may lead to the deterioration of C2D because of the
outdated raw pose caused by reduced SR workload. This
necessitates the consideration of both M2D and C2D during
optimization.

A better approach might be adjusting the periods of both SR
and ATW. However, such an approach could have side effects
as detailed in Fig. 4(A). It shows the profiling of M2D and
C2D in 100 frames output when running Gldemo with default
scheduling and with the optimized scheduling that achieved the
smallest average-case M2D and C2D among various combina-
tions of SR and ATR periods. Although the optimization can
achieve a lower M2D and C2D on average than the default
setting, their variations are significantly increased. Compare
Fig. 4(B) to the right side of Fig. 2. While changing both SR
and ATW periods fixes the GPU contention and the outdated
raw pose issues for the first and second ATWR jobs, the third
ATWR job still suffers from the same issues. This leads to an
extremely large C2D that even surpasses the M2D and C2D
in Fig. 3(B). Such significant fluctuations of M2D and C2D
can cause great discrepancies between the actual and perceived
motions, which is the root cause of motion sickness [4].

Obs. 2. Simply adjusting the periodicities of XR tasks can
cause significant fluctuations in M2D and C2D. A scheduling
technique that considers the freshness of sensor data and GPU
contention is necessary.

B. XR characteristics at runtime

In real-world scenarios, user motion dynamics and scene
diversities contribute to significant variations in the execution

Fig. 5: XR characteristics under motion and scene dynamics.

time of certain tasks. We identify two characteristics (C1, C2)
unique to XR systems given the runtime dynamics.

C1: Motion-dependent Tracking. During the perception
phase, the XR system processes captured user motion through
the VIO task, which exhibits significant variations in exe-
cution time when exposed to a broad range of motion. To
analyze how motion dynamics affect VIO execution times,
we test OpenVINS [11], a widely used VIO algorithm that is
standard in the ILLIXR framework, running on an embedded
platform with two distinct trajectories from the EuRoc MAV
dataset [18], specifically recorded in the Machine Hall (MH01)
and Vicon Room (V102) environments. The execution time
of VIO is recorded across a spectrum of normalized 3D
speeds up to the maximum speed observed in the dataset.
As shown in Fig. 5(A), VIO execution time increases with
speed in both recorded trajectories. This escalation is due
to the feature extraction front-end which detects more new
features at higher speeds. Since VIO employs the MSCKF for
the pose estimation part that calculates based on these new
features, a larger number of features updated during extraction
prolongs the execution time of the pose estimation, resulting
in the overall increase of VIO execution time.

C2: Scene-dependent Rendering. During the visualization
phase, the complete 3D frame needs SRR to render the 2D
frame, which the ATWR reprojects. Therefore, we denote
SRR execution time as render time and ATWR execution time
as reprojection time. We investigate the correlation between
the render and reprojection time when the objects in the
viewport increase. We set up the experiment with only SRR,
ATW, and ATWR running sequentially on the same two
XR applications (Sponza and Gldemo) used in Sec. III-A.
Throughout the experiment, we manipulate the number of
objects by directly altering the objects in the viewport. As
shown in Fig. 5(B), the render time increases linearly with
the number of objects, whereas the reprojection time remains
relatively constant. This discrepancy can be attributed to the
workload heterogeneity of SRR and ATWR. SRR necessitates
the rendering of every vertex, thereby requiring the calculation
of each vertex’s coordinates based on the given viewport. In
contrast, ATWR reprojects only the updated vertices using the
depth information from ATW without re-rendering the entire
frame. Therefore, despite object changes in the scene, the
impact on ATWR’s execution time is minimal, whereas SRR’s
execution time increases linearly with the number of objects.

Obs. 3. Even if the co-optimization of M2D and C2D is
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Fig. 6: BOXR Overview.

achieved, it can be easily nullified by motion dynamics (C1)
and scene changes (C2). Therefore, XR systems need tech-
niques to control the execution time fluctuations caused by
these factors.

IV. METHODOLOGY

A. BOXR Overview

We present BOXR, a body and head motion optimization
framework for XR based on the three observations from
Sec. III and show its system design in Fig. 6.

Motivated by Obs. 1 and Obs. 2, the contention and out-
dated raw pose result in large M2D and C2D, which can be
addressed with a better scheduling policy design. BOXR pro-
poses a contention-preventive scheduling policy ( 1 in Fig. 6)
that manages task execution sequences to maintain the up-to-
date raw pose while preventing contentions. It further designs
an on-demand IMUi ( 2 in Fig. 6) to mitigate the problem
of dropped IMU sensor information during the execution.
Through the BOXR scheduling policy, we obtain an execution
sweet spot given static execution time for all tasks.

Based on Obs. 3, the execution sweet spot derived from
the BOXR scheduling policy can be nullified by the motion
dynamics (C1) and scene changes (C2). Therefore, BOXR
introduces the following runtime adaptions that each targets
at an XR characteristic. To negate the effect of C1, BOXR
designs a motion-driven visual inertial odometer (MVIO) ( 3
in Fig. 6) that crops the input CAM image and controls
the image pyramid level of the feature extraction based on
the current motion magnitude. Also, to limit the extent of
any resulting positional error, it includes an error bounding
mechanism. BOXR then designs a scene-dependant foveated
rendering (SFR) ( 4 in Fig. 6) that replaces the original SRR
to address C2. SFR dynamically changes the foveation area
according to the number of objects in the viewport and centers
the foveation area to the objects centroid.

B. BOXR Scheduling Policy

In this subsection, we assume the execution time of all tasks
stays constant when designing the scheduling policy. This
assumption will be lifted later in Sec. IV-C and Sec. IV-D.
BOXR profiles the execution time for tasks VIO, IMUi, SR,
SRR, ATW, and ATWR as tVIO, tIMUi, tSR, tSRR, tATW, and
tATWR, respectively, and this needs to be done only once
for a target hardware platform. To maintain the given sensor
sample rate and target frame rate, BOXR assumes the period
of CAM (TCAM) which equals the period of VIO (TVIO),
the period of IMU (TIMU), and the period of ATW (TATW)

Fig. 7: BOXR scheduling example

are given in advance. Without loss of generality, they follow
TCAM > TATW ≫ TIMU. The scheduling policy mentioned
below is executed prior to each VIO execution.

Contention-preventive Scheduling. To address the chal-
lenges from Obs. 1 and Obs. 2, we aim to eliminate the
contention between SRR and ATWR while providing an up-
to-date raw pose to ATWR.

At first, to prevent unnecessary contention between ATWR
and SRR in any C2D sequence, we schedule the first SR job
to start its execution immediately after the completion of the
VIO job. This ensures the first SR job always receives the raw
pose result from the latest VIO. In addition, within each TVIO,
the asynchronous execution of SRR and ATWR contributes
to their contention. Therefore, we schedule ATW and ATWR
jobs synchronously to SR and SRR jobs such that they begin
only after the completion of the SRR job.

Next, to ensure the freshness of the raw pose data in
the final output frame of ATWR, we co-optimize the SR
& SRR and ATW & ATWR periods with the following
approach. Since TVIO > TATW, multiple output frames
from ATWR exist in each TVIO. If a different time interval
from SR & SRR is applied to ATW & ATWR to process
each frame, the SRR job from the previous C2D instance
(VIO→IMUi→SR→SRR→ATW→ATWR) may overlap with
the ATWR job in the current C2D instance. This contributes
to the outdated raw pose in Obs. 2, which inevitably results
in large C2D variation. If an equal interval to execute each
sequence is given, the ATWR and SRR overlapping can be
safely avoided. Therefore, we first calculate the number of
C2D instances within TVIO by m = ⌈ TVIO

TATW
⌉. We then equally

divide TVIO by m to determine the period of SR, TSR, by
TSR = TVIO

m . Although we do not explicitly change the period
of ATW, TATW, it is implicitly determined since ATW runs
synchronously to SR under our scheduling approach. To avoid
additional contention caused by the delay of some ATW
jobs, we further set a lower bound on TSR, with TSR ≥
tIMUi + tSRR + tATW + tATWR. This eliminates the possibility
of choosing a too small TSR since there will always be tATWR
time between two SRR jobs.

On-demand IMUi. IMUi processes every IMU result to
maximize the availability of the fused pose, which leads to
wasted work of IMUi since the output fused pose is only
used by SR and ATW, which satisfies TSR ≃ TATW ≫ TIMU.
Although decreasing the IMU sample rate proves effective in
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Fig. 8: Impact of C1 and C2 on scheduling

Fig. 9: Motion-Driven Visual Inertial Odometer

reducing wasted work, it delays the update of the fused pose,
resulting in a significant increase in M2D and C2D.

To address this problem, we propose an on-demand IMUi
method that samples the IMU reading and computes the fused
pose at the beginning of each SR and ATW job. Since the fused
pose is only needed before SR and ATW, this method keeps
the same M2D and C2D with a timely fused pose update.

We present the complete scheduling example in Fig. 7.
Fig. 7(A) shows that given TCAM = TVIO = 60 and TATW = 16,
we calculate m = 4 in the first TVIO. It then depicts the
scheduling decisions for each VIO, IMUi, SR, and SRR
job based on the contention-preventive scheduling and on-
demand IMUi, where the first job of VIO is released at
0 and immediately followed by the sequential execution of
IMUi, SR, and SRR. Contention-preventive scheduling further
calculates the TSR = 15 and executes IMUi, ATW, and ATWR
upon the finish of SRR, as shown in Fig. 7(B). The TSR
is then compared with the designed lower bound to prevent
contention.

C. Motion-Driven Visual Inertial Odometer (MVIO)

As explained with C1 from Obs. 3, a larger magnitude of
motion inflates the VIO execution time due to the increase of
new features extracted. Fig. 8(A) illustrates its impact on the
schedule. As the VIO execution time increases, the release
of the first SR job for the current TVIO is delayed, leading
to a significant increase in C2D. Therefore, we control the
increase of VIO execution time by limiting the number of
features through cropping the input image to VIO as well as
decreasing the level of the pyramid for its feature pyramid
network [11]. We denote the remaining input image percentage
as p and the pyramid level as l. To further analyze the effect
of image crop and pyramid level adjustment, we run the VIO

Algorithm 1: MVIO Algorithm
1 Input: IMU at, vt, wt, profiling data vB , wB , f(e, lmin), ereq, Smax;
2 /* Motion Score */;
3 tprev ← Timenow();
4 S ← CalculateMotionScore(vt, wt, vB , wB) /*Eq. 1*/;
5 p← 1;
6 l← lmax;
7 if S > 0 then
8 /* Image Crop and Pyramid Level Adjustments */;
9 pmin ← SetMinimumCrop(f(ereq, lmin));

10 p← CalculateP(S, Smax, pmin) /*Eq. 2*/ ;
11 l← ChangeL(S, Smax) /*Eq. 3*/ ;
12 end
13 image← CropImage(p, at) /*Crop image based on at direction*/;
14 /* Start of VIO execution */;
15 features← FeatureExtraction(image, l);
16 pose← PoseEstimation(features);
17 /* VIO Error Bounding */;
18 tVIO ← Timenow() - tprev ;
19 raw pose← readRawPose() /*Read latest raw pose*/;
20 max dis← CalculateMaxDisplacement(vt, at, tVIO, raw pose);
21 if pose > max dis then
22 pose← LinearFit(raw pose,max dis);
23 end
24 raw pose← pose /*Publish updated raw pose*/;

task on a PC with V102 trajectory used in Fig. 5 and record
the pose quality measured in position error and VIO execution
time by only changing p in Fig. 9(A) and by only changing
l in Fig. 9(B). We observe that as p decreases, indicating a
larger cropped area, the execution time decreases exponentially
while the position error increases exponentially. As l increases,
indicating a higher pyramid level, the execution time increases
linearly as the position error decreases linearly.

Due to the tradeoff presented in Fig. 9, we design the
Motion-Driven Visual Inertial Odometer (MVIO) to control
the growth of execution time while limiting the decrease of
pose quality. MVIO first sets a budget of VIO execution time
BVIO = tVIO, where tVIO is the VIO execution time used in
Sec IV-B. It changes the remaining input image percentage p
and pyramid level l and corrects any obvious position errors
with its error bounding method. MVIO executes prior to each
VIO job, with a complete algorithm provided in Alg. 1.

Motion Score. To capture the motion changes from the
default speed and rotation, MVIO first computes a motion
score S which quantifies the deviation of the current motion to
the representative motion from profiling. During the profiling
of VIO execution time, we obtain the scalar value of velocity
vB and scalar value of rotation wB when VIO completes
execution in a given budget BVIO with the original image
(p = 100%) and the max pyramid level lmax. At runtime,
MVIO invokes IMU to get the acceleration and rotation at
current time t, and calculates the first integral of at to get the
current scalar velocity vt and the current scalar rotation wt.
MVIO then constructs S that describes the motion deviation
from the vB and wB , which is shown in Eq. 1. During
the profiling, we record the maximum observed velocity and
rotation and use them to obtain the maximum possible motion
score Smax, which is given as input to the MVIO algorithm.

S =
vt − vB

vB
+

wt − wB

wB
(1)
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The MVIO algorithm given by Alg. 1 calculates S at the
beginning (line 4) as it is used in subsequent calculations.
Initially, MVIO sets p = 1 and l = lmax, which means no
image cropping or pyramid level reduction from the maximum
level (line 5 and line 6). S > 0 indicates a larger motion
compared to the default vB and wB is detected, necessitating
image cropping and pyramid level adjustment (line 8 to
line 11) to keep the execution time below BVIO. Otherwise,
MVIO maintains the default full image and the maximum
pyramid level (line 5 to line 6).

Image Crop Adjustment. To limit the pose quality degra-
dation, MVIO bounds the position error with the minimum
remaining percentage pmin that is calculated from a profiling
function (line 9). Let us denote the position error as e.
We construct a function p = f(e, lmin) through profiling,
which describes the relationship of p to e when applying
the minimum pyramid level lmin, as shown in Fig. 9(B). By
design, we allow the user to determine the maximum position
error tolerable in the system, denoted by ereq. Therefore, by
f(ereq, lmin), we get the minimum remaining percentage pmin,
which is used during image cropping to limit the error to ereq.
Note that, since the function f(e, lmin) has been profiled with
lmin, the use of p ≥ pmin ensures at most ereq positional error
when adjusting l later as long as l ≥ lmin.

As shown by Fig. 9(B), VIO execution time and remaining
image percentage p have an exponential relationship. In ad-
dition, as illustrated in Fig. 5(A), VIO execution time has an
approximately linear relationship to motion speed. Hence, we
formulate the calculation of p with an exponential relationship
to S, given by Eq. 2.

p = max(pmin, p
S

Smax
min ) (2)

The max function in Eq. 2 ensures if any abnormally large
speed and rotation result in an S > Smax, MVIO always uses
pmin to control the position error below ereq. The term S

Smax

returns the percentage difference between current S to Smax.
Through the exponential calculation, MVIO returns the p value
(line 10) and crops the image based on p and direction of
motion indicated by the vector value of acceleration at from
IMU (line 13). This occurs because new features will always
emerge from the direction of motion as new image content
appears from that direction.

Pyramid Level Adjustment. As shown in Fig. 9(A), VIO
execution time and pyramid level follow a linear decrease
relationship that is discrete since the pyramid level is an
integer value. Because we profile p = f(e, lmin) with a
minimum pyramid level lmin, the parameter e after image
crop should still satisfy e ≤ ereq, which gives the room for
l adjustment. Therefore, we decrease l from lmax with a step-
wise function in Eq. 3 and compute it after the calculation of
p (line 11). During the computation, Smax is evenly distributed
to lmax−lmin+1 segments. We calculate the current S and then
compare it with each segment to determine the corresponding l
using the step-wise function. Through the process, MVIO can
equally leverage the image crop and pyramid level reduction to

Fig. 10: Scene-Dependent Foveated Rendering

control the growth of VIO execution time within the designed
BVIO while maintaining the minimum position error ereq.

l =


lmax, if S ≤ Smax/lmax

lmax − 1, if Smax/lmax < S ≤ (lmin + 1)Smax/lmax

. . .

lmin, if S > Smax/lmin
(3)

VIO Error Bounding. Due to the introduction of ereq,
MVIO further employs a VIO error bounding method to
limit the position error by leveraging the raw pose published
by the previous VIO. After the execution of the VIO al-
gorithm (line 14 to line 16), MVIO calculates the current
VIO execution time tVIO that can be used to determine the
maximum possible displacement from the previous raw pose
result (line 19). MVIO chooses to use the raw pose because
the fused pose introduces further noise from the head motion
during the IMUi calculation. The maximum displacement
max dis, indicated as the orange circle in Fig. 9(C), is
computed by getting the average velocity vavg during tVIO with
vavg = vt+at× tVIO and then apply this speed to the previous
raw pose by max dis = raw pose+ vavg × tVIO. If the pose
from the MVIO execution exceeds the max dis, the pose is
fitted to the raw pose by finding the intersection between the
line that connects pose and raw pose and the max dis.

D. Scene-Dependent Foveated Rendering (SFR)

Based on C2 from Obs. 3, we observe the increase of objects
in the viewport causes the execution time of SRR (render time)
to grow linearly, leading to the contention between SRR and
ATWR again shown in Fig. 8(B). Existing work has developed
the foveated rendering method that can reduce the rendering
time by using low-resolution texture and meshes in the periph-
eral area [19–24]. Foveated rendering typically involves three
levels of rendering resolution: an inner area with the original
resolution, a middle area with half the original resolution, and
an outer area with one-quarter of the original resolution. We
denote the inner area as the foveation area. While existing
work uses a fixed foveation area that is not adaptive to scene
changes, we change the foveation area and plot the tradeoff of
frame quality measured in the Structural Similarity (SSIM)
Index and render time in Fig. 10(A) with a fixed objects
number. We choose to use the SSIM index because it measures
the human-perceived difference in image, which is widely
used in existing research [10, 25, 26]. Fig. 10(A) indicates both
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Algorithm 2: SFR Algorithm
1 Input: SR vp objects, profiling data K,M,C, rmax, nB ;
2 n←Lengthof(vp objects) /*get number of objects in viewport*/;
3 α← 1;
4 /* Foveation Scaling Factor */;
5 if n > nB then
6 γ ← CalculateGamma(α,K,M,C, nB) /*Eq. 4*/;
7 /* Optimization Loop */;
8 while Cγ > BSRR do
9 if α > 0 then

10 α← α− 0.1;
11 γ ← CalculateGamma(α,K,M,C, nB) /*Eq. 4*/;
12 end
13 end
14 end
15 /* Foveated Rendering */;
16 inner area← γ · (height× width);
17 middle area←

(γ · height+ offset)× (γ · width+ offset)− inner area;
18 outer area← outer area−middle area− inner area;
19 c←CalculateCentroid(vp objects) /*get centroid of objects*/;
20 2D frame←

FoveatedRender(c, inner area,middle area, outer area);
21 frame← 2D frame /*publish rendered 2D frame*/;

the quality of rendering and rendering time follow a linear
decrease relationship to the area of foveation.

Motivated by this tradeoff, we design the Scene-Dependent
Foveated Rendering (SFR) that aims to control the increase
of rendering time with minimum degradation of rendering
quality. SFR first adopts a budget of render time BSRR = tSRR.
We then profile the number of objects that result in BSRR
render time with no usage of foveated rendering and denote
it as nB . SFR replaces the default SRR and follows Alg. 2.

Foveation Scaling Factor. Due to the linearity of render
quality and render time to the foveation area in Fig. 10(A),
we set up a foveation scaling factor, denoted as γ, to scale the
area of foveation which limits the growth of render time within
the designed BSRR. Through offline profiling, we are able to
get the linear coefficients of each linear relationship. In the
following equations, C denotes the linear coefficient of render
time to γ, M denotes the linear coefficient of rendering quality
to γ, and K denotes the linear coefficient of render time to
number of objects in the viewport. To start up, the objects
in the current frame’s viewport, denoted as vp objects, are
provided alongside C, K, and M . SFR first gets the number
of vp objects (line 2) n and calculates the γ according to
Eq. 4 when n > nB (line 6). In the equation, α is used as
a control value that is initially set to 1 to max out the frame
quality (line 3). The first term indicates that when γ = 1, no
foveated rendering is used. The next term (1−α)M

αC indicates the
contributing factor from render quality. The last term (n−nB)

αKC
indicates the contributing factor from object number changes.

γ = 1− (1− α)M

αC
− (n− nB)

αKC
(4)

Optimization Loop. With the initial γ changes, it is still
possible that the rendering time exceeds the BSRR, so we opt
to further reduce the rendering time by making concessions in
rendering quality with a decreased α in Eq. 4. This process
is called the Optimization loop and is presented in line 7

to line 11. Initially, SFR projects the rendering time with
the calculation of Cγ and compares it with the BSRR. If the
projected rendering time exceeds BSRR, SFR lowers the value
of α by 0.1 and recalculates γ using Eq. 4. This loop ends
when α = 0 or Cγ ≤ BSRR.

Dynamic Objects Centroid. Since the centroid of objects
does not align with the viewport center, we need to calculate
the objects’ centroid and fix the center of foveation there to
effectively reduce the rendering time. Therefore, after setting
the inner area, middle area, and outer area (line 16 to line 18),
SFR calculates the centroid of objects in the viewport by
taking the average of all objects geometry center x coordinates
xavg and y coordinates yavg and returns the centroid coordinates
as (xavg, yavg). We show two examples of 2D frames rendered
by SFR in Fig. 10(B).

E. Generalizability

Since BOXR only modifies the scheduler and three tasks
(VIO, IMUi, and SRR) of the state-of-the-art XR framework,
it can be directly applied to any XR systems that share similar
tasks and pipelines. When deploying on a new platform,
BOXR requires re-profiling task execution times for a target
hardware setup. This step provides the execution times needed
for the BOXR scheduling policy and sets the budget for
MVIO and SFR. To eliminate the manual effort involved in
the process, BOXR includes a setup application that collects
all necessary execution times for each task. These data are
then fed into our scheduler, MVIO, and SFR algorithm to
determine the initial conditions for execution. Following the
same process, we have successfully deployed BOXR onto
three different hardware platforms in Sec. V-A.

One may have a concern that since the execution times
of all tasks have to be re-profiled for each hardware setup,
it may generate profiling errors that can interfere with the
scheduling decisions and lead to performance degradation.
However, since the MVIO and SFR use the same profiling data
to make runtime adaption, they can offset the inaccuracy by
reactively changing the magnitude of adjustment. For example,
if a shorter VIO execution time is profiled, MVIO will crop the
image more aggressively due to a larger difference between
BVIO and tVIO. Hence, VIO is still controlled below BVIO
amidst motion dynamics.

V. EVALUATION

A. Evaluation Setup

Hardware Setup. To encompass a broad range of hardware
platforms commonly used to support XR systems, we evaluate
BOXR on three hardware platforms, including a PC equipped
with NVIDIA GTX 3060 GPU and two embedded devices,
NVIDIA AGX Xavier [27] and NVIDIA Orion Nano [28],
which are widely used in cutting-edge XR research [10, 29–
31]. We fix the power of the PC to 180W, Xavier to 30W, and
Nano to 15W to control the GPU frequency and lock the CPU
frequency of each embedded platform to its maximum value.
The output frame is displayed on Northstar Next HMD [32]
with a max 90Hz refresh rate.
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TABLE I: Evaluated XR Applications

Sponza(Spon) Materials(Mat) Gldemo(Gl) Platformer(Plat)
Object 32 81 7 3014
Vertex 192870 62826 54760 26168
Texture 33 24 8 4

TABLE II: EuRoc MAV Dataset Categorization

No Motion Small Motion Med. Motion Large Motion
v3D(m/s) [0, 0.1) [0.1, 1) [1, 2) [2,∞)

Perc(%) 10.62 66.75 20.30 2.33

XR Applications Setup. To encompass diverse scene com-
plexities that contribute to different rendering pressures in
the everyday use case of XR, we selected four OpenXR [1]
applications initially built with the Godot engine [17]. Their
details are shown in Table I and ordered by decreasing
rendering demands. Sponza brings the user to a detailed palace
for exploration. Materials renders a series of identical objects
with various textures. Gldemo simulates an indoor scene
resembling a household living room. Platformer creates a
pixel-style world with numerous individual objects for gaming
scenarios. We fixed the output resolution to 2560× 1440 and
set both horizontal and vertical fields of view to 90◦. To avoid
additional overhead from application interfaces and focus on
the effects of motion and scene dynamics, we loaded only the
scene information, including meshes and textures, from these
applications and used OpenGL as the rendering engine for all
rendering and reprojection tasks.

Controlled Trajectories. We controlled the input visual-
inertial information using the eleven trajectories from EuRoc
MAV datasets [18]. This dataset covers the majority of indoor
XR use cases with average speed from 0.33m/s to 0.99m/s
and rotation from 0.21rad/s to 0.66rad/s. We set the CAM
period to 50ms and the IMU period to 5ms which is used
by the dataset. To understand the effect of head and body
motion on the system performance, we categorized all the
visual-inertial information into four motion classes shown in
Table II based on their ground-truth 3D speed (v3D), which is
the scalar value of the linear speed in 3D space composed of
both velocity and rotation.

Baseline Configuration. We compared BOXR against two
state-of-the-art baselines derived from the ILLIXR frame-
work [29–31, 33]. ILLIXR [10] is a popular open-sourced
XR software testbed that is being widely used in XR re-
search. ILLIXR uses the default publisher-subscriber model in
Sec. II-A to schedule tasks, with V-Sync disabled to maximize
throughput. ILLIXR-OP uses the same optimized version of
ILLIXR in Sec. III-A, which modifies the periods of SR and
ATW to minimize M2D and C2D while still adhering to the
same publisher-subscriber model. To assess the contribution
of each component, we evaluate the scheduling policy and
the complete framework separately by making them into
two separate baselines. BOXR-S is a static version that only
implements the scheduling policy described in Sec. IV-B.
BOXR implements the complete framework that includes the
scheduling policy, MVIO, and SFR in Sec. IV. We fixed the

Fig. 11: System runtime breakdown

TABLE III: Dropped IMU sensor information

MH01 MH05 V101 V102
ILLIXR 36% 26% 27% 35%

ILLIXR-OP 62% 46% 26% 73%
BOXR-S 0% 0% 0% 0%
BOXR 0% 0% 0% 0%

target frame rate to 90 FPS, which matches the max screen
refresh rate, and recorded the results of M2D and C2D at the
end of each frame.

B. Controlled Settings Effectiveness

Latency and Overhead Breakdown. To evaluate the over-
head of BOXR, we profiled the average execution time of
each task in the XR framework. We use the MVIO to replace
the VIO task and SFR to replace the SRR task. Within these
tasks, we separately profile the overhead of running BOXR
algorithms, including the scheduling policy, line 3 to line 13
and line 17 to line 22 in Alg. 1, as well as line 2 to line 19
in Alg. 2. As shown in Fig. 11, the average overhead of our
method is around 0.06ms, 0.13ms, and 0.31ms compared to
the entire average system runtime, which is more than 17ms
on PC, 36ms on Xavier, and 48ms on Nano. The overhead of
using our method is about 0.3%, 0.4%, and 0.6%, respectively.

Dropped IMU Sensor Information. We record the dropped
IMU sensor information in two trajectories from the Machine
Hall (MH01, MH05) and two from the Vicon Room (V101,
V102) in EuRoC MAV. As shown in Table III, in ILLIXR, the
IMU operates at a significantly shorter period than SR and
ATW, leading to up to 36% dropped information. ILLIXR-
OP further increases the SR period, causing up to 73% IMU
sensor information to be dropped. BOXR-S, benefiting from
On-demand IMUi, triggers IMU sensor readings only at the
beginning of SR and ATW, resulting in no dropping of sensor
information. Additionally, BOXR samples IMU readings at the
beginning of VIO, which are used to calculate the raw pose
leading to no drop of sensor information.

M2D Metric. To obtain the M2D value defined in Def. 1,
we record the age of the latest IMU information at the time
of frame output. The resulting average M2Ds are shown
in the left subfigures of Fig. 12(A). Compared to ILLIXR,
BOXR-S reduces M2D by up to 33% because the proposed
scheduling policy effectively reduces contention between SRR
and ATWR. Furthermore, BOXR achieves M2D reductions by
up to 63% on PC, 37% on Xavier, and 36% on Nano, thanks to
SFR which further controls the rendering time when rendering
a large number of objects.

The right subfigures of Fig. 12(A) demonstrate the variation
of M2D. BOXR-S increases M2D standard deviation by 15%
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Fig. 12: M2D and C2D Evaluation. The plots from left to right show the average M2D, M2D variations, average C2D, and C2D
variations. The M2D and C2D variations show each M2D and C2D given different motion classes in the Gldemo application.

Fig. 13: Avg. output frame rate with 90FPS target frame rate

compared to ILLIXR on Nano. As shown in Fig. 8(B), BOXR-
S assumes constant task execution time, which cannot elimi-
nate contention due to the dynamics brought by objects in the
scene (C2) and potentially increases the M2D variation during
runtime. However, BOXR reduces M2D standard deviation
by up to 57% compared to ILLIXR. This is due to the use
of SFR, which bounds rendering time to avoid contention
while maintaining similar quality by dynamically adjusting
the foveation area and object centroid based on the number
of objects in the scene.

C2D Metric. We add the CAM timestamp to each SRR-
generated 2D frame and then record the age of this CAM
information during the final 3D frame output as C2D. The left
subfigures of Fig. 12(B) illustrate the average C2D. BOXR-S
achieves up to 13% C2D reduction compared to ILLIXR since
the scheduling policy effectively prevents contentions between
SRR and ATWR. BOXR reduces C2D by up to 27% compared
to ILLIXR, owing to MVIO which bounds the VIO execution
time across from motion dynamics.

The right subfigures of Fig. 12(B) show the variation of
C2D. BOXR-S experiences 6% increase of C2D standard
deviation compared to ILLIXR on Xavier. As explained in
Fig. 8(A), the dynamics of motion (C1) contribute to variation
increase since BOXR-S neglects the motion effect on VIO
execution time. However, BOXR achieves up to 23% less
C2D standard deviation compared to ILLIXR. This significant
improvement is made possible by MVIO, which controls

Fig. 14: Position error and render time-quality tradeoff

the VIO execution time with image crop and pyramid level
adjustment during large motion. Notably, the only extremely
large C2D outliers for BOXR occur in the large motion
class, which constitutes just 2% of the entire dataset. This
is because when unexpectedly large motion dynamics happen
(i.e. sudden drop or turn), MVIO may still use the previous
velocity to calculate the first VIO job during such abrupt
motion dynamics, creating a single large C2D outlier. We will
provide more evaluation about this in Sec. V-C.

Average Output Frame Rate. Figure 13 shows the average
output frame rate measured in frames per second (FPS) during
a 60-second runtime, with the target frame rate fixed at 90
FPS. Due to reduced contention between SRR and ATWR
through BOXR scheduling policy, BOXR-S achieves up to a
27% frame rate increase compared to ILLIXR and up to a
16% increase compared to ILLIXR-OP. BOXR achieves up
to a 43% frame rate increase compared to ILLIXR and up
to a 35% increase compared to ILLIXR-OP, thanks to the
use of SFR that adapts to the objects change. With BOXR
optimization, the PC achieves a consistent 60 FPS across all
four applications, ensuring an ideal XR experience. Xavier
achieves 60 FPS in Gldemo and Platformer, making it practical
for low-render demand XR applications. Furthermore, BOXR
enables usage of the XR system on Nano, which outputs 30
FPS for three applications.

Quality of Pose. To test the general effectiveness of the
MVIO algorithm, we run both ILLIXR and BOXR with the

10



TABLE IV: Quality of Rendering for Different Platforms

PC Xavier Nano
∆Time ∆SSIM ∆Time ∆SSIM ∆Time ∆SSIM

Spon -15.0% -3.7% -25.4% -5.6% -30.4% -5.7%
Mat -16.0% -2.7% -21.6% -4.6% -26.1% -4.8%
GL -6.5% -1.2% -16.9% -1.8% -22.3% -3.4%
Plat -12.9% -1.9% -10.5% -1.3% -20.8% -3.0%

Fig. 15: Scene swap and motion spike

Gldemo application on PC and record the position error from
ground truth in Fig. 14 for a one-minute trial. To differentiate
the environments for VIO and evaluate the general applicabil-
ity, we conduct the experiment with the KITTI [34] camera
feed for outdoor large motion scenario as well as the EuRoC
MAV [18] camera feed for indoor moderate motion scenario.
BOXR decreases the position error by 9.7% for the outdoor
scenario of KITTI but yields a similar error for the indoor
scenario of EuRoC MAV. Since KITTI involves significantly
larger velocities, ILLIXR shows a larger variability of position
errors due to the prolonged VIO execution time, resulting in
unfinished VIO jobs. Benefiting from MVIO, BOXR mitigates
the problem by controlling VIO execution time to avoid VIO
jobs being dropped and achieve more accurate localization.
Another observation is that BOXR accumulates position error
more rapidly than ILLIXR when consecutively large motion
dynamics happen, as shown in 1000 to 1500 frames. However,
it quickly corrects the subsequent poses due to the use of VIO
error bounding and reaches the same pose quality when motion
magnitude decreases. This experiment shows that BOXR can
maintain similar pose quality during indoor moderate motion
scenarios, while even improving the pose quality in outdoor
large motion scenarios.

Rendering Output Quality. Table IV records the change of
render time and quality of output frame measured in the Struc-
tural Similarity (SSIM) Index from ILLIXR to BOXR. SSIM
captures the perceived quality of the output frame, which
is a direct implication of user notice of visual change [25].
Although we see a decrease of SSIM up to 5.7% in Nano,
we trade off this rendering quality degradation to a 30.4%
decrease in rendering time, which contributes to better M2D
and C2D while increasing output frame rate.

Overall Effectiveness: BOXR enhances performance
across all platforms by addressing the challenges pre-
sented in Obs. 1 and Obs. 2 through its scheduling
policy design and tackling the challenge from Obs. 3 with
runtime adaptation.

C. Burst-dynamics Scenarios Performance

Burst-dynamics Generation. Abrupt changes in scenes and
motions lead to dynamics bursts, which include scene swaps

Fig. 16: Scene swap effect and motion spike effect

when the user changes applications and motion spikes when
the user experiences sudden acceleration or stops. To test the
system’s effectiveness in these scenarios, we generate two
burst-dynamic scenarios that exhibit similar effects on the
system. For scene swaps, we switch from the current scene
to a new scene that contains over 2000 objects as shown in
Fig. 15(A). We force rendering 10 frames of the new scene to
mimic a surge in render demand, which is prevalent in abrupt
scene-changing scenarios. For motion spikes, we connect the
Zed Mini Stereo camera [35] and drop the camera from a fixed
height, leading to a sudden acceleration depicted in Fig. 15(B).
We increase the number of these burst dynamics during a
60-second runtime by injecting more occurrences randomly.
We evaluate across all four baselines using two applications,
Sponza and Gldemo on PC.

Scene Swap Effect on M2D. Scene swaps cause a sig-
nificant render time increase, which substantially impacts the
M2D metric illustrated in Fig. 8(A). We record the average
M2D under an increased number of scene swaps during 60-
second trials. As shown in Fig. 16(A), the other three baselines
experience up to a 57% increase in M2D. In contrast, BOXR
effectively limits the increase of M2D to at most 10% when
scene swaps occur every second. Compared to other baselines,
BOXR keeps the render time below the designed budget
through SFR, which effectively mitigates the rise in M2D even
under abrupt scene swaps.

Motion Spike Effect on C2D. Motion spikes significantly
increase the execution time of VIO, leading to a substantial rise
in C2D depicted in Fig. 8(B). We, therefore, record the average
C2D as the number of motion spikes gradually increases in
Fig. 16(B). The baselines show a significant increase in C2D,
up to 48%, whereas BOXR only experiences a 6% increase in
C2D, owing to the use of MVIO, which effectively controls
the execution time increase even during motion spikes.

Robustness in extreme cases: Stemming from Obs. 3,
BOXR effectively limits the increase of M2D and C2D
with its runtime adaptations in highly dynamic scenarios,
proving its robustness within extreme use cases.

D. Real-world Experiment

Experiment Setting. To closely match the state-of-the-
art XR systems applications while maintaining freedom of
movement, we connect the Zed Mini Camera [35] to the
Xavier platform and design three XR applications using the
Godot game engine [17] to cover the different magnitudes
of user motion, shown in Fig. 17. Video Watch creates an
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Fig. 17: Real-world Testcases setup

Fig. 18: M2D and C2D in Real-world Experiments

interface that can play any static images or videos. Room
Explore invites the users to roam freely in a 3D demo scene.
Escape Game utilizes scenes from Platformer and makes the
sprites chase and fire at the user, who needs to dodge and
avoid being caught. We test the three applications on the
default ILLIXR and the complete BOXR frameworks. We also
adopt the 20ms M2D requirement and 80ms C2D requirement
described in Sec. II-B, which indicate an unnoticeable head
motion and body motion delay, respectively.

M2D and C2D. We sample M2D and C2D from 1000
frames during a 60-second trial and present the results in
Fig. 18. Across all applications tested, BOXR achieves up to
a 42.6% reduction in M2D and a 31.8% reduction in C2D
compared to ILLIXR. While no M2D and C2D in BOXR
exceed their respective requirements in Video Watch, which
involves low-magnitude motion, 4.6% of M2D and 1.9% of
C2D values miss the requirements in Escape Game due to
greater magnitude of motion. In extremely large motion around
frame 200, ILLIXR experiences over 60ms of and 100ms of
C2D, whereas BOXR’s M2D stays below 20ms and C2D is
maxed out at 90ms.

Applicability to real-world scenarios: The consistently
low M2D and C2D in real-world test cases prove the
usability of BOXR in practical deployment.

VI. RELATED WORK

Latency Metrics for XR. Existing works have proposed
multiple latency metrics in the context of distributed asyn-

chronous systems similar to the pub-sub model used by
XR systems [13, 36]. Among these metrics, the most widely
accepted metric for XR systems is M2D because of its direct
association to motion-sickness [3, 37]. Existing work addresses
this issue from various perspectives. Some employ reprojection
methods for timely pose updates to reduce M2D [7–9]. For
example, [8] enables ATW on a commercial XR headset,
while [7] uses machine learning to predict and delay ATW
execution. However, these methods assume fully preemptive
GPU execution with no dependencies, which does not hold
true in practical GPU systems [13, 14]. Dedicated hardware
for tasks like ATW [38, 39] increases power and complexity,
challenging integration into existing XR frameworks. Offload-
ing computation to nearby edge servers [26, 40–43], such as
CollabVR [26], reduces M2D but requires high bandwidth and
powerful PCs nearby. Despite these efforts, motion sickness
persists due to neglect of C2D.

XR Scene Rendering. The increased material resolution
makes rendering every frame in raw resolution impracti-
cal [24]. Foveated rendering methods degrade peripheral view-
port quality while maintaining central resolution [19–23, 44–
46]. RITnet [44] uses real-time semantic segmentation for eye-
tracking and foveated rendering based on user gaze but lacks
adaptive foveation based on scene dynamics. Reprojection-
based methods run asynchronously to compensate for frame
loss [8, 47–49], such as [49] minimizing frame warping cost to
improve frame rates. However, they often use previous frame
data, leading to large C2D.

VII. CONCLUSION

This paper presents BOXR: a Body and head motion
Optimization framework for eXtended Reality. Building upon
the three critical observations detailed in Sec. III, BOXR
employs a scheduling policy alongside two dynamic runtime
adaptations in Sec. IV-C and Sec. IV-D. Through comprehen-
sive comparison with ILLIXR, BOXR demonstrates significant
performance improvement in controlled and real-world scenar-
ios, proving the design’s general effectiveness, robustness in
extreme use cases, and adaptability to practical deployment.

Despite all the benefits achieved by BOXR, there are still in-
teresting directions for future work. First, while BOXR focuses
solely on software-level optimization, integrating software-
hardware co-optimization could further enhance performance.
Second, the benchmark we used primarily reflects data-
intensive daily working scenarios but not GPU-intensive gam-
ing scenarios. Addressing these will enable the development
of a more comprehensive XR system.
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