
Toward a Predictive eXtended Reality Teleoperation
System with Duo-Virtual Spaces

Ziliang Zhang, Cong Liu, Hyoseung Kim
University of California, Riverside

{zzhan357, congl, hyoseung}@ucr.edu

Abstract—Extended Reality (XR) provides a more intuitive in-
teraction method for teleoperating robots compared to traditional
2D controls. Recent studies have laid the groundwork for usable
teleoperation with XR, but it fails in tasks requiring rapid motion
and precise manipulations due to the large delay between user
motion and agent feedback. In this work, we profile the end-
to-end latency in a state-of-the-art XR teleoperation system and
propose our idea to optimize the latency by implementing a duo-
virtual spaces design and localizing the agent and objects in the
user-side virtual space, while calibrating with periodic ground-
truth poses from the agent-side virtual space.

I. INTRODUCTION

Extended Reality (XR) has proven its strength in intuitive
robot control as it displays the robot movement directly
within an XR-maintained virtual space that can be easily
comprehended by common users [1–3]. Emergent research
enables the teleoperation of robots with XR, which performs
remote human-robot interaction through WebSocket client-
server design similar to existing teleconferencing applications.
This enables risky operations in a hazardous environment or
inaccessible locations like fire scenes or outer space [4, 5].

Existing XR teleoperation constructs a single virtual space
on the user side for interaction, as shown in Fig. 1(A). This
user-side virtual space consists of user poses provided by XR
sensors, as well as agent pose and objects poses provided
by the robot agent in the remote working environment. Since
these poses are reliably captured by on-device sensors without
additional processing after localization, we denote them as
ground-truth poses. The user head, body, and hand poses
captured by XR sensors are initially transmitted via the internet
to the agent to perform coordinate transformations. During
the transform, the agent sends transform string, video feed,
and point cloud information back to the XR for virtual space
visualization, which is displayed to the user through a head-
mount display. However, since the virtual space must rely on
remote agent and objects poses to update for every output
frame, significant network latency causes disjoint user and
agent movements, which leads to tasks with rapid maneuvers
or precise manipulations unable to be completed [4].

To solve this problem, we propose a duo-virtual spaces de-
sign that localizes the agent and objects through the use of XR
sensors and object modeling to avoid the large latency caused
by communication. Our design is illustrated in Fig. 1(B). The
preliminary results from our case study show that by using
this design, the end-to-end latency of XR-robot teleoperation
can be reduced by up to 89%.

user pose

user Agent Environment user Agent Environment

User-side Virtual Space

transform

video


point cloud

(A) State-of-the-art XR teleoperation design

user pose

User-side Virtual Space

ground-truth 

poses

Agent-side Virtual Space

ground-truth poses ground-truth posesground-truth prediction

(B) Our XR teleoperation design 

Fig. 1: Comparison between existing teleoperation and our
proposed system. Our design conducts local prediction in XR
for remote agent and objects, mitigating large network delay.

II. BACKGROUND AND MOTIVATION

A. Characterizing Teleoperation Workload

State-of-the-art XR teleoperation maintains a single virtual
space in the XR framework that consists of user, agent, and
objects poses to localize agent and objects and display them
to the user. The detailed workflow is explained below with
ROS Reality [4], a representative XR teleoperation framework
widely used for prevalent commercial products and projects
like ROS Sharp [5] and Open-TeleVision [6]. Fig. 2 shows its
detailed system design and task dependencies.

The XR framework follows a publisher-subscriber model for
task execution. The current XR devices have multiple CPUs
and accelerators (GPU, NPUs) for running tasks concurrently.
The XR system reads from an inertial measurement unit (IMU)
and a camera (CAM) sensor and estimates user head and
body poses through Visual Inertial Odometer (VIO) and IMU
integration (IMUi) tasks. Concurrently, a hand-tracking model
takes the CAM input and produces the hand poses at the same
rate as the body pose. All poses are sent through a WebSocket
client to the agent side, in return for the video, point cloud,
and transform string. Before visualizing the virtual space, a
transform listener task is used to convert the transform string to
agent pose, and point cloud is used to update the objects poses.
During visualization, the scene reconstruction task constructs
the state for virtual space based on the most recent head, body,
and hand poses from the XR perception phase, and localizes
the agent and objects using the received poses. Finally, an
Asynchronous Timewarp task is scheduled immediately before
frame submission so XR can recalculate the viewport based on
the head pose that has the smallest possible age of information.

The agent uses the Robot Operating System (ROS) for
scheduling and executing tasks on agent. It first maintains a
Rosbridge server to receive the user poses that include head,

1



CAM

IMU
VIO

IMUi

Hand Tracking

Websocket

Client

Rosbridge

Server

State Publisher IK Solverhead/body/hand poses

hand pose

head/body

pose

head/body/hand

poses

Transform

String

video

point cloud

video

Agent

pose

point cloud Transform

video, point cloud,

transform string

state

Joints

Transform Compressor

Visual SLAMHMD

Scene Reconstruction

Async Timewarp

Transform

Listener

CAM

IR
500Hz 120Hz 60Hz Periodic Event TriggeredFrequency Tasks Type Sensor/HW

transform 

string

hand posePe
rc

ep
tio

n
V

is
ua

liz
at

io
n

C
ontrol

Feedback

Fig. 2: ROS Reality [4], an open-sourced XR teleoperation system, implements a publisher-subscriber execution model for
XR and uses ROS for agent. Agent depends on user poses to transform and XR depends on video, point cloud, and transform
string to update the virtual space.

body, and hand poses. Upon receiving these user poses, the
agent implements a state publisher to convert the poses to state
for the robot Inverse Kinematic (IK) solver. The IK solver
outputs the transform command to the robot’s joints and starts
transforming. During the process, a transform compress task
constantly compresses the transform command to a transform
string. Concurrently, a visual SLAM task takes input from
agent CAM and infrared (IR) sensors and produces point cloud
data. The transform string, point cloud, and the video feed
directly from CAM are constantly sent back to the user side
via the Rosbridge server.
B. Challenges of latency optimization

Although ROS reality enables basic usability, tasks like
tossing and catching balls, tying shoe laces, and tracing
straight lines are still unachievable due to their rapid objects
movement or precise manipulation requirements [4]. This is
due to the large latency between a user motion and the
visual feedback from the agent in the virtual space [2, 3].
To profile the latency, we set up an experiment with two
PCs running the XR framework and a Gazebo simulation
of Kinova J2N6S300 [7] robot arm in two different network
segmentations from the same building. The PCs communicate
through a 5GHZ 802.11ac WIFI environment. During the
experiment, the XR framework follows three trajectories in
EuRoC MAV dataset [8] with two different scenes and sent
poses at the same frequency as the screen refresh rate of the
head-mount display. We use the ROS reality [4] framework for
all data communication and record the age of information of
the user pose that leads to a transform when frame is submitted
to head-mount display as end-to-end latency.

As shown in the Fig. 3(A) gray bars, it usually takes more
than 1.2 seconds for user to observe the feedback visualization
of a transform invoked by the user motion in XR. This large
latency causes large user-agent motion mismatch and makes
the user adjust based on the old poses from agent, which
results in false adjustment. We find out that the dominant part
of the latency is due to the network transmission, which can
go up to 1 second since the data has to suffer from a two-way
network delay.

Following this observation, we believe the timely update
of agent poses is more critical compared to pose accuracy.

ground-truth Optimized Prediction Simple Prediction

(A) Local vs. Remote latency comparison (B) Abrupt pose change when merging

Fig. 3: Latency profiling and challenges during poses merge.

Therefore, we opt for a duo-virtual spaces design which
aims to avoid the network latency with a localization method
running directly on XR. Since XR and agent are equipped with
similar localization sensors like IMU and CAM, XR can set up
models for agent and objects within the user-side virtual space
and predict the poses using the models and directly localize
the poses with the XR sensors. The agent keeps a second
virtual space with the original user poses from XR, agent,
and objects poses directly captured from agent sensors and
uses this as a ground-truth state. Agent sends back the poses
periodically to calibrate the state in user-side virtual space,
which can reduce the positional error caused by prediction.
We then make changes to the existing framework used in
the previous experiment and record the end-to-end latency in
Fig. 3 blue bars. We find out the end-to-end latency is reduced
by 89%, 88%, and 83% respectively for all three trajectories.

However, this method faces significant pose drift when
merging the ground-truth poses with the predicted poses for
each of the calibrations, as shown in Fig. 3(B). If the prediction
does not optimize for a smooth transition for the next state, the
object will create a large euclidean distance ∆d2 compared to
the optimized predicted pose euclidean distance ∆d1. Solving
this issue is our ongoing work.

III. CONCLUSION

This extended abstract describes a new system design for
existing XR teleoperation aiming to reduce the large network
latency between XR and agent. We profiled the end-to-end
latency and provided a case study to prove the effectiveness
of the new design. We plan to continue exploring further on
challenges to complete this framework and conduct extensive
experiments in various network and scene conditions.

2



REFERENCES

[1] D. Whitney, E. Rosen, E. Phillips, G. Konidaris, and S. Tellex, “Compar-
ing robot grasping teleoperation across desktop and virtual reality with ros
reality,” in Robotics Research: The 18th International Symposium ISRR.
Springer, 2019, pp. 335–350.

[2] R. Hetrick, N. Amerson, B. Kim, E. Rosen, E. J. de Visser, and E. Phillips,
“Comparing virtual reality interfaces for the teleoperation of robots,” in
2020 Systems and Information Engineering Design Symposium (SIEDS).
IEEE, 2020, pp. 1–7.

[3] Y. Karpichev, T. Charter, and H. Najjaran, “Extended reality for en-
hanced human-robot collaboration: a human-in-the-loop approach,” arXiv
preprint arXiv:2403.14597, 2024.

[4] D. Whitney, E. Rosen, D. Ullman, E. Phillips, and S. Tellex, “Ros
reality: A virtual reality framework using consumer-grade hardware for
ros-enabled robots,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 1–9.

[5] Siemens, “ROS Sharp,” 2024. [Online]. Available: https://github.com/
siemens/ros-sharp

[6] X. Cheng, J. Li, S. Yang, G. Yang, and X. Wang, “Open-television:
Teleoperation with immersive active visual feedback,” arXiv preprint
arXiv:2407.01512, 2024.

[7] K. Robotics, “Kinova ros,” https://github.com/Kinovarobotics/kinova-ros.
[8] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,

M. W. Achtelik, and R. Siegwart, “The euroc micro aerial
vehicle datasets,” The International Journal of Robotics Research,
2016. [Online]. Available: http://ijr.sagepub.com/content/early/2016/01/
21/0278364915620033.abstract

3

https://github.com/siemens/ros-sharp
https://github.com/siemens/ros-sharp
https://github.com/Kinovarobotics/kinova-ros
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract

	Introduction
	Background and Motivation
	Characterizing Teleoperation Workload
	Challenges of latency optimization

	Conclusion
	References

